Name Dr. V. Ganapathy

Designation DST-INSPIRE Faculty

Qualification Ph.D. (Chemical Engineering)

Education and Experience

2005-2007	M.Sc. (Material Science and Technology) Pondicherry University, India
2007-2008	Researcher, Department of Chemical Engineering, Pohang University of Science and Technology, South Korea
2008-2012	Ph.D. Student Department of Chemical Engineering, Pohang University of Science and Technology, South Korea
2012-2013	Postdoc Researcher SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, South Korea
2013-2015	Postdoc Researcher School of Chemical Engineering, Sungkyunkwan University, South Korea
2015-till date	DST-INSPIRE Faculty Centre for Solar Energy Materials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, India

Research Areas of Interest

Novel perovskite, quantum dot and nanostructured metal oxide synthesis and its application toward renewable energies (Perovskite, Quantum-dot, Dye-solar cells), device physics related to those solar cells and transferring the technologies for developing large solar panels.

Research Publications

- Publications: Research articles in International Journals- 19
 - National and International conferences- 12
 - Patent- 1
- Publications: Total Impact Factors (IF) -111.3 Total Citations - 411

List of Publications

- <u>V. Ganapathy</u>, B. Karunagaran, Shi-Woo Rhee. Improved performance of dye-sensitized solar cells with TiO₂/ Alumina core-shell formation using atomic layer deposition.Journal of Power Sources (2010), 195, 5138-5143. (Top 25 Hottest Articles from April to June 2010& July to September 2010).(IF: 6.2) (Cited by-99)
- <u>V. Ganapathy</u>, B. Karunagaran, Shi-Woo Rhee. Sub-micrometer-sized Graphite as a Conducting and Catalytic Counter Electrode for Dye-sensitized Solar Cells.ACS Applied Material & Interfaces (2011), 3, 857-862. (IF: 6.7) (Cited by-141)
- 3) A. Anthonysamy, Y. Lee, B. Karunagaran, <u>V. Ganapathy</u>, Shi-Woo Rhee, S. Karthikeyan, KwangSoo Kim, Min Jae Ko, Nam-Gyu Park, M. J. Ju, JinKon Kim. Molecular design and synthesis of Ruthenium (II) sensitizers for high efficient Dye-sensitized Solar Cells: Combined experimental and DFT-TDDFT computational studies. Journal of Material Chemistry (2011), 21, 12389-12397. (IF: 6.6) (Cited by-24)
- 4) <u>V. Ganapathy</u>, W. Kwon, Shi-Woo Rhee.Carbon-nanofiber counter electrodes for quasi-solid state dye-sensitized Solar Cells. Journal of Power Sources(2011), 196, 10798-10805. (IF: 6.2) (Cited by-32)
- <u>V. Ganapathy</u>, B. Karunagaran, Shi-Woo Rhee. Amorphous Carbon Counter Electrode for Lowcost and efficient Dye-sensitized Solar Cells. Renewable energy (2012), 41, 383-388. (IF: 3.4)(Cited by-24)
- 6) J. Kwon^{!!}, <u>V. Ganapathy</u>^{!!}, Y. H. Kim, K. D. Song, H. G. Park, Y. Jun, P. J. Yoo, J. H. Park. Nanopatterned conductive polymer films as a Pt, TCO-free counter electrode for low-cost dyesensitized solar cells. Nanoscale (2013), 5, 7838-7844. (IF: 7.3) (<u>Cited by-23)</u>^{!!}Equal Contribution.
- 7) T. Pazhanivel, V. P. Devarajan, S. Bharathi, K. Senthil, <u>V. Ganapathy</u>, K. Yong, N. Devaraj. Systematic Investigation on the Strucutre and Photophysical Properties of CdSe, CdSe/ZnS QDs and their Hybrids with Beta Carotene. RSC Advances. (2013), 3, 26116-26126. (IF: 3.8) (Cited by-1)

- V. Ganapathy, E.H. Kong, Y.C. Park, Hyun. M. Jang, Shi-Woo Rhee. Cauliflower-like SnO₂ Hollow Microspheres as Photoanode with Carbon fiber Counter Electrode for High-Performance Quantum Dot-and Dye-Sensitized Solar Cells. Nanoscale, (2014), 6, 3296-3301. (IF: 7.3) (Cited by-11)
- 9) <u>V. Ganapathy</u>, D. W. Jung, J. Kwon, J. Choi, H. Nansra, J. H. Park, G. Ra. Yi. Multi Functionality of Macroporous TiO₂ spheres in Dye-sensitized and Hybrid Heterojunction solar cells. Langmuir, (2014), 30, 3010-3018. (IF: 4.4) .(<u>Cited by-9</u>)
- 10) S. Venkatakrishnan, <u>V. Ganapathy</u>, E. Elamparuthi, V. Anbazhagan, Aerobic synthesis of biocompatible copper nanoparticles: Promising antibacterial agent and catalyst for nitroaromatic reduction and C-N cross coupling reaction. RSC Advances. (2014), 4, 15003-15006.(IF: 3.8) (Cited by-6)
- 11) K. B. A. Ahmed, S. Subramanian, A. Sivasubramanian, <u>V. Ganapathy</u>, V. Anbazhagan, Preparation of gold nanoparticles using salicorniabrachiata plant extract and evaluation of catalytic and antibacterial activity.SpectrochimicaActa Part A Molecular and Biomolecular Spectroscopy. (2014), 130, 54-58.(IF:2.3) (<u>Cited by-16</u>)
- 12) H. Kim^{II}, <u>Ganapathy. V</u>^{II}, J. H. Park. Conducting Polymer coated Non-woven Graphite-Fiber film for Dye-sensitized Solar cells: Superior Pt-and FTO-free counter electrodes. ElectrochimicaActa. (2014), 137, 164-168.(IF: 4.5)^{II} Equal Contribution. (Cited by-7)
- 13) V. Chakrapani, K. H. Ayaz Ahmed, V. Vinod Kumar, <u>V. Ganapathy</u>, S. Philip Anthony, V. Anbazhagan. A facile route to synthesize casein capped copper nanoparticles: an effective antibacterial agent and selective colorimetric sensor for mercury and tryptophan. RSC Advances .(2014), 4, 33215-33221. (IF: 3.8) (Cited by-2)
- 14) J. K. Kim¹¹, <u>V. Ganapathy</u>¹¹, N. Heo, D. H. Wang, J. H. Park. Efficient Hole Extraction from Sb₂S₃Heterojunction Solar Cells by the Solid transfer of Pre-formed PEDOT: PSS filmJ. Physical Chemistry C. (2014), 118, 22672-22677. (IF: 4.7)¹¹ Equal Contribution. (Cited by-8).
- 15) K. B. A. Ahmed, S. Subramanian, <u>V. Ganapathy</u>, N. Hari, A. Sivasubramanian, V. Anbazhagan, B-siosterol-D-glucopyranoside Isolated from Desmostachyabipinnata mediate Photoinduced Rapid Green Synthesis of Silver Nanoparticles. RSC Advances. (2014), 4, 59130-59136.(IF: 3.8) (Cited by-2)
- 16) <u>Ganapathy. V,</u> S. Yu, D. H. Wang, W. I. Lee, J. H. Park. Facile Control of Intra-and Inter particle Porosity in Template-Free synthesis of Size-Controlled Nanoporous TiO₂ beads for Efficiency Organic-Inorganic Heterojunction Solar Cells. Journal of Power Sources. (2015), 279, 72-79. (IF: 6.2) (Cited by-1)

- 17) C. J. Mo, "<u>V. Ganapathy</u>," M. Kim, J. H. Park. Self-organized Formation of Embossed Nanopatterns on various Metal Substrates: Application To Flexible Solar Cells. ElectrochimicaActa. (2015), 176, 636-641.(IF: 4.5) "Equal Contribution.
- 18) H. Kim, "Ganapathy. V, "D. H. Wang, J. H. Park. Large Area Platinum and Fluorine-doped Tin Oxide-free Dye sensitized Solar Cells with Silver-Nanoplate Embedded Poly(3,4-Ethylenedioxythiophene) Counter Electrode. Electrochimica Acta. (2016), 187, 218-223. (IF: 4.5) "Equal Contribution.
- 19) K. Zhang, L. Wang, J. K. Kim, M. Ma, <u>V. Ganapathy</u>, C. L. Lee, K. J. Kong, H. Lee, J. H. Park, Three-phase Interfaces of Titanium Dioxide Nanoparticles-Water for Highly Efficient Co-Catalyst-Free Photocatalytic Hydrogen Generation. Energy & Environmental Science. Accepted, DOI: 10.1039/C5EE03100A. (IF: 20.5)

Patent:

1) Shi-Woo Rhee, KarunagaranBojan, <u>GanapathyVeerappan</u>, Hye-Min Ra, "Dye-sensitized solar cell including metal oxide of core shell structure".Korean Patent No: 10-1079413 (2011). Link below: <u>http://search.wips.co.kr/Kor_Search/Doc/KR/KR_doc_type1.asp?wkey=KR20110051890A_P&HL=%uC774%uC2</u> <u>DC%uC6B0%7C%7C</u>

Conference Presentation

Oral Presentation:

1) <u>V.Ganapathy</u>, B. Karunagaran and Shi-Woo Rhee, "Improved performance in Dye sensitized Solar cells Employing Alumina modified TiO₂photoelectrodes" 19th International Photovoltaic Science and Engineering Conference and Exhibition (19th PVSEC). (09-13th November, 2009), ICC-Jeju, Korea.

2) Shi-Woo Rhee, <u>V.Ganapathy</u>, and B. Karunagaran" "Atomic layer deposition of thin Al_2O_3 barrier layers for efficient dye sensitized solar cells" 9th International Conference on Atomic Layer Deposition (AVS). (19-22nd July, 2009), California, USA.

3) <u>V.Ganapathy</u>, B. Karunagaran and Shi-Woo Rhee, "Low temperature spray coated Nano-carbon counter electrode for Dye sensitized solar cells" International Union of Materials Research Societies- International Conference on Electronic Materials (IUMRS-ICEM 2010). (22-27th November, 2010), Kintex- Seoul, Korea.

4) <u>V.Ganapathy</u>, B. Karunagaran and Shi-Woo Rhee"Flexible Carbon Counter electrode for low cost and efficient Dye-sensitized solar cells" Korean Institute of Chemical Engg. Conference (KiChe). 20-22th October, 2010), Daejeon, Korea.

5) <u>V.Ganapathy</u>, H. Nansra, K. Zhang, J. H. Park, "Stibnite sensitized Hollow cubic TiO_2 for high performance Heterojunction solar cells" 3rd International conference on Semiconductor Sensitized and Quantum Dot Solar cells. (9-11th June, 2013), Granada, Spain.

Poster Presentation:

1) <u>V.Ganapathy</u>, B. Karunagaran and Shi-Woo Rhee"Al₂O₃ coated TiO₂ Electrodes for Efficient Dye Sensitized Solar Cells" The 4th Korea-Japan Bilateral workshop on Dye-sensitized and Organic solar cells. (24-25th August, 2009), Hanyang University, Seoul, Korea.

2)<u>V.Ganapathy</u>, B. Karunagaran and Shi-Woo Rhee. "High performance Graphite counter electrode for dye-sensitized solar cells"Korean MRS 2009. (05-06th November, 2009), POSTECH, Pohang, Korea.

3) <u>V.Ganapathy</u>, B. Karunagaran and Shi-Woo Rhee. "Submicron size graphite as a counter electrode electrocatalyst for highly efficient dye-sensitized solar cells"18th International conference on Photochemical conversion and storage of solar energy (18th IPS). (025-30th October, 2010), Korea University, Seoul, Korea.

4).<u>V.Ganapathy</u>, B. Karunagaran and Shi-Woo Rhee. "Carbon Nanofiber on flexible polymer substrates for efficient dye-sensitized solar cells". 9th Korea-Japan symposium on Materials & Interfaces (31-03th Oct-Nov, 2010), Yeosu, Korea.

5) <u>V.Ganapathy</u>, B. Karunagaran and Shi-Woo Rhee. "Flexible polymer substrates for Carbonnanofiber counter electrode catalyst on dye-sensitized solar cells" Proceedings of the 12th Cross Straits Symposium on Materials, Energy and EnvironmentalEngineering. (17-18th Nov,2010), Pohang, Korea.

6) <u>V.Ganapathy</u>, B. Karunagaran and Shi-Woo Rhee. "Flexible Carbon-Nanofiber counter electrode for Quasi-solid state dye-sensitized solar cells" Material Research Society (2011MRS Spring meeting). (25-30th April, 2011), Moscone West convention center, San Francisco, USA.

7) J. Kwon, <u>V. Ganapathy</u>, Y. H. Kim, Y. Jun, P. J. Yoo, J. H. Park. "Nanopatterned conductive polymer films as a Pt, TCO-free Counter electrode for Low-cost dye- sensitized solar cells" Material Research Society (2013MRS Fall meeting). (1-6 Dec, 2013), Moscone Hynes Convention Center, Boston, Massachusetts, USA.

Affiliation to Professional societies

Electrochemical Society (ECS)

Awards and Honors

- 1 2003/04 First Prize in College Science day competition in B.Sc. (UG)
- 2 2003/04 Second Prize in College Poster presentation in B.Sc. (UG)
- 3 2006/07 Best Research Project award in M.Sc. (PG)
- 4 2009/10 Best Poster presentation award in 9th-Korea-Japan symposium on Materials & Interfaces in Ph.D., Oct-31 to Nov 3, 2010, Yeosu, S.Korea
- 5 2012/14 Awarded Sungkyunkwan Advanced Institute Postdoctoral Fellowship, Suwon, S. Korea.
- 6 2014/15- Awarded BK21 Postdoctoral Fellowship in Sungkyunkwan University, Suwon,

S. Korea

7 2015 – Awarded DST-INSPIRE Faculty Award.

Contact Information

Centre for Solar Energy Materials, ARCI

Balapur, Hyderabad

Tel: 91-40-24452466

E-mail:ganapathy.inspire@project.arci.res.in