High voltage carbon encapsulated-graded LiMn₂O₄:LiNi_{1-x-y}Co_xAl_yO₂ cathodes for rechargeable Liion pouch cells

Overview: Layered-structures such as $\text{LiNi}_{1-x-y}\text{Mn}_x\text{Co}_y\text{O}_2$ and $\text{LiNi}_{1-x-y}\text{Co}_x\text{Al}_y\text{O}_2$ are currently used as cathode materials in LIB for high-energy applications. However, practical achievable capacity of these materials are restricted to 150-200 mAh/g due to the limitation in the achievable charging voltage (4.2 V) with acceptable cyclic stability. If over-charge (above 4.2 V) induced surface degradation in $\text{LiNi}_{1-x-y}\text{Co}_x\text{Al}_y\text{O}_2$ can be prevented, it is possible to achieve high reversible capacity up to 230 to 250 mAh/g. The minimization of surface induced degradation is observed in surface modified $\text{LiNi}_{1-x-y}\text{Co}_x\text{Al}_y\text{O}_2$ (LNCA)

Key Features

- Scalable synthesis method
- Higher specific capacity

Potential Applications

Lithium ion batteries

Funding Agency : DST

SEM of Surface modified LNCA

Cyclic stability of the pristine and surface modified LNCA