High voltage carbon encapsulated-graded LiMn$_2$O$_4$:LiNi$_{1-x-y}$Co$_x$Al$_y$O$_2$ cathodes for rechargeable Li-ion pouch cells

Overview: Layered-structures such as LiNi$_{1-x-y}$Mn$_x$Co$_y$O$_2$ and LiNi$_{1-x-y}$Co$_x$Al$_y$O$_2$ are currently used as cathode materials in LIB for high-energy applications. However, practical achievable capacity of these materials are restricted to 150-200 mAh/g due to the limitation in the achievable charging voltage (4.2 V) with acceptable cyclic stability. If over-charge (above 4.2 V) induced surface degradation in LiNi$_{1-x-y}$Co$_x$Al$_y$O$_2$ can be prevented, it is possible to achieve high reversible capacity up to 230 to 250 mAh/g. The minimization of surface induced degradation is observed in surface modified LiNi$_{1-x-y}$Co$_x$Al$_y$O$_2$ (LNCA)

Key Features

- Scalable synthesis method
- Higher specific capacity

Potential Applications

- Lithium ion batteries

Funding Agency: DST

SEM of Surface modified LNCA

![SEM Image](image1)

5 µm

Cyclic stability of the pristine and surface modified LNCA

![Cyclic Stability Graph](image2)